

Filter Performance Validation

Air Quality - ISO 8573-2:2001 (E)

Independent test report on oil carry-over tests for high efficiency compressed air filters

Northumbrian Environmental Training and Research Centre School of Applied Sciences Northumbria University

Contents

Introduction	03
Construction	04
Performance	05
Validation	06
Quality	
Accreditations	

Introduction

Market leadership

Walker Filtration is a leading innovator in the manufacture of filtration products for use across a wide range of markets.

Since formation in 1983, Walker Filtration has led this competitive sector through the ability to provide quality, technical expertise, innovation and an excellent standard of customer service.

A commitment to continuous improvement has seen the Company be first to market with the introduction of many new technologies, including the now industry standard use of polyester needle felt as a superior drainage sleeve on all elements.

Walker Filtration is a pioneer within the industry thanks to a willingness to continue driving research and development forward.

Walker Filtration has stayed true to its goal of delivering a market leading product range that provides the customer with reliable and efficient solutions to their needs.

Choosing the right filter

Deciding on the correct filter element to use within your operation can have huge implications. Quality must be your number one priority. Substandard elements can cause corrosion, contamination and heap unnecessary operating costs onto your business.

Our ongoing investment in research and development has resulted in elements which are manufactured using the highest quality raw materials. Proven production techniques guarantee superior retention capacity of impurities, sustained performance and a long service life.

Filters from Walker Filtration ensure continuous high efficiency with minimal operating pressure loss during the whole of their life cycle. The materials of construction - stainless steel, glass microfibre, plastics are selected to ensure they offer no potential for downstream contamination. In particular, our polyester drainage sleeves do not degrade like reticulated plastic foam sleeves and assure high temperature and synthetic oil tolerance.

Flexibility

A broad range of high performance filtration equipment, elements and spares coupled with reliable technical service makes Walker Filtration the natural choice of many industry leaders. The Walker brand name, known for providing consistent quality and innovation has become synonymous with providing the highest possible standards.

Our products have been adopted by a diverse range of market sectors including electronics, oil and gas, and automotive as well as clean room environments such as food manufacture, brewing and medical.

Customer demands are speedily responded to, however complex. Pro-active research and design continually push the accepted boundaries of filtration technology.

Construction

Construction

A dynamic approach to design, material selection and construction means that Walker Filtration is at the forefront of filtration technology. Our internal Research and Development team constantly identify, evaluate and implement enhancements to improve the ease of use and performance of our market leading range.

Filter Element Design and Materials

Push Fit Design for fast, trouble free servicing. Eliminates the need for troublesome tie rods.

Corrosion Resistant End Caps Injection moulded from glass filled nylon then bonded to the filter core with a quick setting two part polyurethane potting resin for maximum strength.

Stainless Steel perforated support cylinders, twice as strong as galvanised steel, can withstand 7 bar in either direction.

Borosilicate Microfibre Glass Media high quality filter paper is used to manufacture the media pack.

This material, with a bonded

structure, withstands high temperatures, is completely inert and is immune to degradation. With sub micron fibre diameters and an extremely high voids volume (as seen in this stereo micro-scan above) it is available in different grades for varying efficiency.

Deep Bed Spiral wound technology is used to form the media pack. This offers low differential pressure, extremely high oil removal efficiencies and proven continuous performance with long service life.

Extra Stainless Steel inner support on our larger reverse flow elements is provided by the addition of a coil spring spot welded to the inner

cylinder. This feature ensures these elements meet the demands of "outside to in" flow and do not rupture causing downstream contamination.

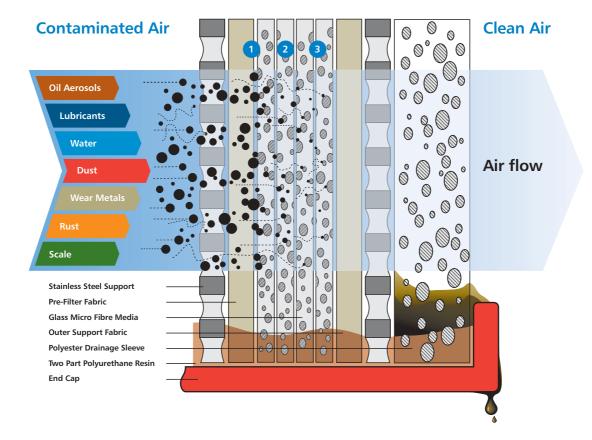
High Nitrile 'O' Rings ensure perfect sealing within the filter housing whilst withstanding high temperatures of over 120°C.

123456

Quality Control and full traceability are provided by ink jet marking specific manufacturing codes on every filter element complying with our ISO 9001 manufacturing procedures. Many elements are supplied complete with a Certificate of Conformity.

Particulate Pre-filtration on both sides of the media pack offers protection with air flow in either direction. This non-woven fabric also enhances the strength of the filter pack and increases filter life.

Polyester Fibre Drainage Sleeve, as used by Walker Filtration for over twenty years, has now become industry standard. This polyester material collects coalesced oil from the media pack and allows this to gravitate down to the quiet zone of the filter bowl thus preventing any oil carryover. Unlike reticulated foams which can seriously degrade causing downstream contamination, this material has a high tensile strength and withstands all the demands of compressed air filtration.


Colour Coded Endcaps provide quick and easy identification of filter grade especially useful during service work

4

Performance

Three Physical Methods of Filtration

Effective filtration takes place in three stages facilitated by the single fibre collection mechanisms explained below. Each mechanism is effective in eliminating certain contaminants at varying particle sizes collected on individual fibres in the filter media. These particles are captured and coalesce into larger droplets, migrating through the media to be drained away.

1 Direct Interception

Particles larger than the mean pore size of the filter media will simply impact directly onto the surface of the fibre matrix. Walker Filtration utilises glass micro-fibre filter media with a mean fibre diameter of 0.5 micron.

2 Inertial Impaction

Inertial impaction occurs when small particles (usually less than 2 microns) penetrate beyond the surface of the filter media but cannot negotiate the torturous path within the media and are eventually captured by the fibres.

Oiffusion (Brownian Motion)

It has been established that very small particles (less than 0.1 to 0.2 microns) move in a very random and erratic manner within the airstream. When particles are so small their motion is often violent and collisions with the fibre matrix are therefore increased.

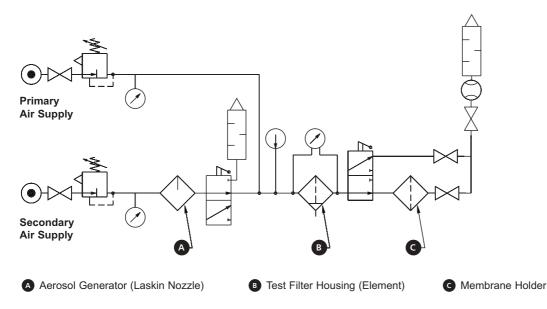
Extract from:

Report on oil carry-over tests for high efficiency oil removal filter elements

WALKER FILTRATION LTD | June 2004

Introduction

This report details the methodology and results for a series of oil carry-over experiments performed on the Walker Filtration XA and X1 series of coalescing filter elements. The XA and X1 series have a target downstream oil aerosol concentration of 0.01 mg/m³ (0.01ppm) and 0.10 mg/m³ (0.1ppm) respectively.


Methods

General

The oil carry-over experiments were performed in accordance with method B1 of BS ISO 8573-2:1996 (Compressed air for general use – Part 2: Test methods for aerosol oil content). This method deals with sampling and analysis of airborne aerosols at a constant flow rate. The general layout of the test rig is shown in Figure 1. The method requires that no wall-flow (liquid contamination that can be formed in the bottom of the pipe work) is present and so the rig was modified by connecting an empty filter housing in series, upstream of the test filter housings. Nevertheless, confirmatory tests with and without the empty housing indicated that wall flow is non-existent in the test rig.

The general principle is to generate a known challenge oil aerosol concentration, in this case using a Laskin nozzle, to pass this challenge concentration through a test filter element and then to determine the downstream oil aerosol concentration by sampling through filter membranes. Oil content is determined by solvent extraction of the membranes followed by analysis of the solvent by infra-red spectroscopy.

Figure 1: Arrangement of the test rig used in the oil carry-over tests.

Northumbrian Environmental Training and Research Centre School of Applied Sciences Northumbria University Ellison Building Newcastle upon Tyne NE1 8ST

Tel: +44 (0)191 227 4668 Fax: +44 (0)191 227 3519 Email: enquiries@netrec.uk.com

Air Quality - ISO 8573-2:2001 (E) FILTER PERFORMANCE VALIDATION

Northumbrian Environmental Training and Research Centre School of Applied Sciences Northumbria University Ellison Building Newcastle upon Tyne NE1 8ST

Tel: +44 (0)191 227 4668 Fax: +44 (0)191 227 3519 Email: enquiries@netrec.uk.com

Oil aerosol generation

Oil aerosol challenges to the filters were generated using a Laskin nozzle at a typical differential pressure of 0.3 mbar (4.4 psi) to 0.4 mbar (5.9 psi). The actual challenge oil aerosol concentration was determined by weighing the test filter element before and after exposure to the challenge concentration and then dividing the weight difference by the volume of air passing through the filter over the duration of the test.

Pressure and air flow measurements

The following pressure and air flow measurements were made on the test rig:

- Differential pressure across housing containing dry filter element
- Differential pressure across empty housing
- · Differential pressure across housing containing wet filter element
- Differential pressure across Laskin nozzle
- · Flow rate of housing on test

All pressure and flow measuring equipment were within calibration.

Sampling of oil aerosol downstream of the test filters

The sampling apparatus for measuring the downstream oil aerosol concentration is shown in Figure 2. Three Whatman GF/F filters were placed on a membrane support and secured in the membrane holder. Care was taken to ensure that the filter papers were not contaminated during handling, including the use of gloves and solvent washed tweezers. Additionally, because the analysis method depends on the determination of very low levels of oil, particular attention was paid to the cleanliness of the sampling equipment. The sampling equipment, including sample holder was washed with solvent prior to the commencement of sampling.

Oil extraction and analysis

Calibration

The principle of the analysis is to extract oil collected on the filter membranes into a solvent and then to determine the oil concentration using Fourier Transformed Infra Red spectroscopy (FTIR). A series of calibration solutions was prepared using the same 'Tellus 32' oil that was used in the oil challenges to the filter elements. All analysis was performed on a Perkin Elmer Paragon 1000 FTIR spectrometer with a 40mm path length quartz cell transparent to IR radiation down to 2500cm⁻¹.

The calibration graph for Tellus oil in 1,1,2,trichlorotrifluoroethane (TCTFE) in the range 0 to 100ppm is shown in Figure 3. The total absorbance is obtained from the sum of the individual absorbances at 2960cm⁻¹, 2925cm⁻¹ and 2860cm⁻¹ after correction for the solvent blank. The graph shows linearity over the full range and has a correlation coefficient (r) of 0.9998.

Figure 2: Sampling equipment

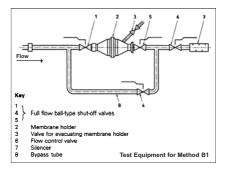
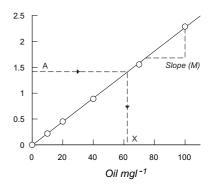



Figure 3. Calibration graph for 'Tellus 32' oil used in the filter challenges

Northumbrian Environmental Training and Research Centre School of Applied Sciences Northumbria University Ellison Building Newcastle upon Tyne NE1 8ST

Tel: +44 (0)191 227 4668 Fax: +44 (0)191 227 3519 Email: enquiries@netrec.uk.com

Extraction and analysis

The three filter membranes were removed from the membrane support using solvent washed tweezers and placed in a solvent washed glass container. 50ml of 1,1,2-trichlorotriflouroethane was poured onto the filters and the container was agitated for 5 minutes to extract all of the absorbed oil aerosol.

Approximately 12 ml of solvent was then transferred to a 40mm path-length quartz cell using a Pasteur pipette. As with the calibration solutions, the total absorbance of the sample was determined from the sum of the individual absorbances at 2960cm⁻¹, 2925cm⁻¹ and 2860cm⁻¹ after correction for the solvent blank which was run prior to the sample. The oil concentrations in the samples were determined from the slope of the calibration graph, and were in the range 2.54 to 9.09 mgl⁻¹.

Y

Pressure and flow data for tests

Table 1. Pressure loss data at maximum rated flow (average)

FILTER	AP HOUSING & WET ELEMENT				
GRADE		Walker Filtration Specification		Test Results	
	mbar	psi	mbar	psi	
Grade X1	150	2.2	150	2.2	
Grade XA	300	4.4	223	3.2	

Oil concentrations downstream of test filters

Table 2 details the results of the oil carry-over experiments. The specified maximum concentrations downstream of the filters under test are 0.01 mg/m³ and 0.10 mg/m³ for the XA and the X1 filter elements respectively. All elements under test exceeded these performance requirements.

Table 2. Results of oil carry-over tests at maximum rated flow (average)

FILTER GRADE	ISO 8573 CLASS	Walker Filtration Specification		Test Results		
		mg/m³	ppm	mg/m³	ppm	
Grade X1	2	0.1	0.08	0.06	0.048	
Grade XA	1	0.01	0.008	0.005	0.004	

Oil Concentration

Explanation:

$$X = \frac{(A-C) \times S \times F (mg)}{M \times 1000}$$

where

X = Oil collected

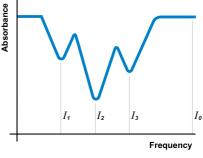
A = FTIR absorbance (see graph below)

$$= \log_{10} \left(\frac{I_o^3}{I_1 I_2 I_3} \right)$$

C = intercept from calibration graph

M = slope

S = solvent sample (ml)


F = dilution factor

and Y = $\frac{\mathbf{R} \times \mathbf{D}}{60}$

where

Y = volume of air passed (m³)

- **R** = test flow rate (m^3/hr)
- **D** = test duration (mins)

Typical FTIR Spectrum

Air Quality - ISO 8573-2:2001 (E) FILTER PERFORMANCE VALIDATION

Northumbrian Environmental Training and Research Centre School of Applied Sciences Northumbria University Ellison Building Newcastle upon Tyne NEI 8ST

Tel: +44 (0)191 227 4668 Fax: +44 (0)191 227 3519 Email: enquiries@netrec.uk.com

Conclusions

In terms of oil removal, the XA and X1 units tested, in both sizes, exceeded their rated performance when tested in accordance with ISO 8573-2.

Northumbria University Ellison Building, Newcastle upon Tyne NE1 8ST

Signed for and on behalf of NETREC:

lara Dr Michael Deary BSc, MSc, F hD

Certification of Compliance to ISO 8573-2

This is to certify that Walker Filtration A20 and A55 Series products were tested in accordance with and complied to ISO 8573-2. Type testing was carried out on X1 and XA grades of each size.

Date of testing : 5th May – 2nd June 2004

Dr Michael Deary Manager, Testing

vices

Certificate date: 21 June 2004

Northumbrian Environmental Training and Research Centre School of Applied Sciences Northumbria University Ellison Building Newcastle upon Tyne

1 85

Tel: +44 (0)191 227 4668 Fax: +44 (0)191 227 3519 Email: enquiries@netrec.uk.com

Mr Antony J Hackney Commercial Director

The ultimate filtration & drying technology | 9

Quality

FILTER GRADE	ISO 8573 CLASS	SOLID PARTICLES maximum number of particles per m ³ 0.1-0.5 micron 0.5 -1.0 micron 1.0-5.0 micron		HUMIDITY & LIQUID WATER pressure dewpoint 0°C	OIL (including aerosol, liquid & vapour mg/m³)	
Grade XA	1	100	1	0	-70	0.01
Grade X1	2	100,000	1000	10	-40	0.1
Grade X5	3	-	10,000	500	-20	1
Grade X25	4	-	-	1000	+3	5

ISO 8573 the compressed air purity standard

ISO 8573 is the group of international standards specifying the purity of compressed air.

All the Walker elements are designed to perform above the criteria set out by these industry standard classifications and internal quality management measures have been designed to ensure that all products are monitored for continual improvement against these specific industry measures.

The table above illustrates the permitted size of each solid, water and oil particle for each individual class of the quality standard, along with the maximum number of particles per m³. The table also specifies which filter grade produced by Walker Filtration adheres to each classification.

ISO 9001:2000 Quality Management Systems

Walker Filtration is accredited to ISO 9001:2000.

This certification is focused on providing a framework for consistent manufacturing quality with performance objectives set at executive level and arrived at through adherence to predefined business procedures.

Walker Filtration measure and review quality on a daily basis from goods inwards, through a vendor rating system evaluating core suppliers, to detailed inspection of all manufactured products produced for despatch to customers.

Accreditation to ISO 9001:2000 is under constant review and certification is granted based on a customer focused policy of continual improvement to deliver the ongoing progression of quality throughout the organisation.

WALKER FILTRATION

Certificate of Conformity

Image: A line of a line	GRADE X25	GRADE XS	GRADE 31	GRADE XA	GRADE AC ACTIVISTED CARBON
<text><text><text><text><section-header><section-header></section-header></section-header></text></text></text></text>	ISO 8573-1: 2001(E)	ISO 8573-1: 2001(E) Maximum particle size class 3	ISO 8573-1: 2001(E) Maximum particle size class 2	ISO 8573-1: 2001(E) Maximum particle size class 1	
<text><text><text><text><section-header><section-header></section-header></section-header></text></text></text></text>	(B)				
<text><text><text><section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header></text></text></text>	ING				
<text><text><text><text><text><text><text><text><section-header><text><text><text></text></text></text></section-header></text></text></text></text></text></text></text></text>				p of original fiber elements. These tests w	ere carried out at the manufacturers
HENCE: The INSE is					
In the other when the the spectrum term of the spec		Rituation ind alternative filter element e	neuro that you read the operating instruct	ions supplied with the original filter.	
		in the second			
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>				store while baseline and damains of th	a used the element
The set of	Clean the filter housing indus or groups. Carefully locate you	ing automatic drain value if fitted and a	place any damaged walk. Lubricate the e	lenest "O" ring soal and screw threads or	the housing connector with suitable of
In these transmission of the the material term burk has backbody, tagged, then did when the term during the the did when the term burk has backbody to the term burk has been	back in service. It is recomme	nded that the differential pressure is no	nitzed regularly and the fiber element rep	lacid before reaching the maximum speci	be closely opened and the filter put fed pressure loss. For optimum
ange al de marce la de marce la de l	ALITY				
The second seco			en manufactured, inspected, tested and a	niesz oberwise stated above conform in a	il respects to the specification(s)
The second secon	ewinge(i) and contract / order rela	due thereto.			
I AGRIGATI Handi Namada Landon and Kana Kana Kana Kana Kana Kana Kana	-				
The second secon	D)				
an under angelens, samme har haften an angele. We see also and an angelens of the set of the second of a filter opportung tarket, with the significant large Second Large Constraints on the large large and products of the second s					
 Biola character biological in the lattice schedul de biological character. Biola character biological de la construcción de la construcción			igleit ihm allemation Rhoslemente übe	prüh. Die angewendelen Texterfahren ge	nali ISO 8573-1-2001 (i) wurden mit
LINEAR I and the second secon					
Text The constraints are done to the start built and the format of the start built and		ibeelements der Firma Walker Filtration	unbedingt die Bedienungsanleitung beach	om, welche den Griginaffihenni bellegt.	
In this date that you built out their fact that the furthermore theme. It is of students out of theraping on themes stars in a students out the furthermore themes and the students out the furthermore themes and the students out the student out the student out the student out the students out the student out the student out the students out the					
Temperature of a worketing, nametative fullyment labor of backeting blockspace assortion - O long of the backeting b				eseltiquag des Rements missen die entra	enchenden Sich erheitzugrachrithen
Largues Telefacturi tihu niku uden balen samm, selar terti tahelen ud tolan addam, Salad ér unnak Adabat si uden partiti na Adabat til se Bestellen andre ude för til andre atternation til angelationarie det förstaltande singelatigt og konstrukt and atter Raussaktan beste dära ette angelationen, andre andre atternationale anterhanks til se partiti selar singelationen atternation atternationale		den, automatisches Röffussentli säuber	n und beschädigte Dichtungen auswechte	in O-Ringe and Schraubgewinde am Geh	Jusefetten. Vanichtig das neue
gebbe under und der Their ist einder einzutrehet. Ein im augebensent des Differentialen dergebentigt zu Generaten und der Their ausstallung bezinder missentellen Deutweiser werdertunk zum gestellte kompetibilitäte zu gesehlteten under des Theires und das Erflicher stadt das Ein gilt einschlut HIMT Tim Wahr Fination weitigt sich staft, dat die Finnerinnens den Angeben und in Zachnungen staate der Vertressand der Angebenigt, implicher und genesat werden, Film Wahr Fination weitigt sich staft, dat die Finnerinnens den Angeben und i der Zachnungen staate der Vertrag der Vertrag bestehlt augebenigt, implicher und genesat werden,					
Firma Wallier Fitzation verbürgt sich dalliz, dall die Fitzveiernerse den Angaben und / oder Zeichnungen szwie dem Vierzag / der Bezellung gemäll angelenigt, impiziert und gesetat werden,	gedifteet werden und der Filte	r iz wieder einzachereit. Es iz euglehi	enzuert den Differerzdruck regelmaffig zu	Oberwachen und den Filter auszulausche	s bevor dieser des angegebenen,
en sidt andes verneit.	Firma Walker Filtration webulingt	sich dalla, dall die Filteniemente den A	ngaben und / oder Zeichmungen sowie de	n Verzag / der Bezellung genäll angeler	igt, implaiet und generat werden,
	en richt anders vernekt.				
	he ultim	ate filtratic	n & drvina	technology	/
he ultimate filtration & drying technology					

Accreditations

Accreditations

Walker Filtration's continued commitment to improvement and business excellence has earned re-certification with the international quality management standard, ISO 9001. This standard has been implemented throughout the organisation to assure our customers that there are Quality Management Systems in place.

Our extensive range of elements meets British and international standards. Air filtered by our filter range meets ISO 8573-1: 2001 (E) air quality classification standards.

International Standards

Particle Removal Efficiency

- ISO 8573-4
- BS-4400
- ASTM D2986-71

NPRES

• ISO 8573-5

• BCAS 860990

Air Quality Classifications

• ISO 8573-1:2001(E)

(R)

CERTIFICATE OF APPROVAL

ed by Lloyd's Register Qu Outlike Memoraneut So

ISO 9001:2000

cture of compres fication equipme

sed air and ge nt, vacuum fi

> 2 June 2003 31 May 200

rtify that the Quality Management S Walker Filtration Ltd ashington, Tyne and Wear United Kingdom

The ultimate filtration & drying technology

Air Quality - ISO 8573-2:2001 (E)

FILTER PERFORMANCE VALIDATION

www.walkerfiltration.com

telephone: +44 (0)191 417 7816 fax: +44 (0)191 415 3748

 Walker Filtration Ltd

 Spire Road, Glover East, Washington,

 Tyne & Wear, NE37 3ES, UK

 Tel + 44 (0) 191 417 7816

 Fax + 44 (0) 191 415 3748

 email sales@walkerfiltration.co.uk

 Walker Filtration PTY Ltd

 3A Kia Court, Preston,

 Victoria 3072, Australia

 Tel +61 (0) 3 9480 0750

 Fax +61 (0) 3 9495 1044

 email sales@walkerfiltration.com.au

 Walker Filtration Inc

 2220 West 50th Street,

 Erie, PA 16506, USA

 Tel +1 814 836 2900

 Fax +1 814 836 7921

 email info@walkerfiltration.com

Walker Filtration reserve the right to alter specification without prior notice. © Walker Filtration 2005. | Ref. EV/0905